Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. Multi-object GOT benefits from a wider applicability, rendering it more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows researchers to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. Furthermore, we propose a Transformer-based GOT tracker TaMOS capable of joint processing of multiple objects through shared computation. TaMOs achieves a 4x faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. Finally, TaMOs achieves highly competitive results on single-object GOT datasets, setting a new state-of-the-art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, and trained models will be made publicly available.
translated by 谷歌翻译
计算机视觉是由许多数据集驱动的,这些数据集可用于培训或评估新方法。但是,每个数据集都有不同的类标签,类的视觉定义,遵循特定分布的图像,注释协议等。在本文中,我们探讨了跨数据集之间的视觉语义关系的自动发现。我们想了解数据集中某个类的实例与另一个数据集中另一类的实例有关。他们是否处于身份,父母/孩子的重叠关系中?还是他们之间没有链接?为了找到跨数据集的标签之间的关系,我们根据语言,视觉和两者的组合提出方法。我们的方法可以有效地发现跨数据集和关系类型的标签关系。我们使用这些结果进行更深入的检查,以了解为什么实例相关,找到班级缺失方面,并利用我们的关系来创建更细粒度的注释。我们得出的结论是,不能通过单独查看类的名称来建立标签关系,因为它们在很大程度上取决于每个数据集的构建方式。
translated by 谷歌翻译
我们为RGB视频提供了基于变压器的神经网络体系结构,用于多对象3D重建。它依赖于表示知识的两种替代方法:作为特征的全局3D网格和一系列特定的2D网格。我们通过专用双向注意机制在两者之间逐步交换信息。我们利用有关图像形成过程的知识,以显着稀疏注意力重量矩阵,从而使我们的体系结构在记忆和计算方面可行。我们在3D特征网格的顶部附上一个detr风格的头,以检测场景中的对象并预测其3D姿势和3D形状。与以前的方法相比,我们的体系结构是单阶段,端到端可训练,并且可以从整体上考虑来自多个视频帧的场景,而无需脆弱的跟踪步骤。我们在挑战性的SCAN2CAD数据集上评估了我们的方法,在该数据集中,我们的表现要优于RGB视频的3D对象姿势估算的最新最新方法; (2)将多视图立体声与RGB-D CAD对齐结合的强大替代方法。我们计划发布我们的源代码。
translated by 谷歌翻译
这项工作的目标是通过扫描平台捕获的数据进行3D重建和新颖的观看综合,该平台在城市室外环境中常设世界映射(例如,街景)。给定一系列由摄像机和扫描仪通过室外场景的摄像机和扫描仪进行的序列,我们产生可以从中提取3D表面的模型,并且可以合成新颖的RGB图像。我们的方法扩展了神经辐射字段,已经证明了用于在受控设置中的小型场景中的逼真新颖的图像,用于利用异步捕获的LIDAR数据,用于寻址捕获图像之间的曝光变化,以及利用预测的图像分段来监督密度。在光线指向天空。这三个扩展中的每一个都在街道视图数据上的实验中提供了显着的性能改进。我们的系统产生最先进的3D表面重建,并与传统方法(例如〜Colmap)和最近的神经表示(例如〜MIP-NERF)相比,合成更高质量的新颖视图。
translated by 谷歌翻译
我们提出了一种从视频中共同估计3D运动,3D形状和高度运动模糊物体的外观的方法。为此,我们通过参加多个帧的预定时间窗口的持续时间来模拟生成时尚以生成方式模拟快速移动物体的模糊外观。使用可微分渲染,我们能够通过通过在短时间间隔上平均输出来减少对输入视频来实现对输入视频的像素方向刻录误差来估计所有参数。为此目的,我们还估计相同优化内的相机曝光间隙时间。要考虑突然的运动变化,如弹跳,我们将运动轨迹模拟为片断多项式,我们能够在子帧精度下估计反弹的特定时间。建立的基准数据集的实验表明,我们的方法优于先前的快速移动物体去孔和3D重建方法。
translated by 谷歌翻译
我们解决了转移学习中的集合选择问题:给出了大量的源模型,我们要选择一个模型的集合,在对目标训练集的微调后,在目标测试集上产生最佳性能。由于微调所有可能的合奏是计算禁止的,因此我们目的是使用计算上有效的可转换度量来预测目标数据集的性能。我们提出了用于此任务的几个新的可转换性指标,并在对语义细分的具有挑战性和现实的转移学习设置中进行评估:我们通过考虑涵盖各种图像域的各种数据集来创建一个大型和多样化的源模型池,两种不同架构和两个预训练计划。鉴于此池,我们自动选择子集,以在给定的目标数据集上形成良好的集合。我们将通过我们的方法选择的合奏与两个基线进行比较,该基线选择单个源模型,其中(1)与我们的方法相同;或(2)从包含大源模型的池,每个池具有与集合相似的容量。平均超过17个目标数据集,我们分别以6.0%和2.5%的相对平均值越优于这些基线。
translated by 谷歌翻译
转移学习已成为利用计算机视觉中预先训练模型的流行方法。然而,在不执行计算上昂贵的微调的情况下,难以量化哪个预先训练的源模型适用于特定目标任务,或者相反地,可以容易地适应预先训练的源模型的任务。在这项工作中,我们提出了高斯Bhattacharyya系数(GBC),一种用于量化源模型和目标数据集之间的可转换性的新方法。在第一步中,我们在由源模型定义的特征空间中嵌入所有目标图像,并表示使用每类高斯。然后,我们使用Bhattacharyya系数估计它们的成对类可分离性,从而产生了一种简单有效的源模型转移到目标任务的程度。我们在数据集和架构选择的上下文中评估GBC在图像分类任务上。此外,我们还对更复杂的语义分割转移性估算任务进行实验。我们证明GBC在语义分割设置中大多数评估标准上的最先进的可转移性度量,匹配图像分类中的数据集转移性的最高方法的性能,并且在图像分类中执行最佳的架构选择问题。
translated by 谷歌翻译
转移学习可以在源任务上重新使用知识来帮助学习目标任务。一种简单的转移学习形式在当前的最先进的计算机视觉模型中是常见的,即预先训练ILSVRC数据集上的图像分类模型,然后在任何目标任务上进行微调。然而,先前对转移学习的系统研究已经有限,并且预计工作的情况并不完全明白。在本文中,我们对跨越不同的图像域进行了广泛的转移学习实验探索(消费者照片,自主驾驶,空中图像,水下,室内场景,合成,特写镜头)和任务类型(语义分割,物体检测,深度估计,关键点检测)。重要的是,这些都是与现代计算机视觉应用相关的复杂的结构化的输出任务类型。总共执行超过2000年的转移学习实验,包括许多来源和目标来自不同的图像域,任务类型或两者。我们系统地分析了这些实验,了解图像域,任务类型和数据集大小对传输学习性能的影响。我们的研究导致了几个见解和具体建议:(1)对于大多数任务,存在一个显着优于ILSVRC'12预培训的来源; (2)图像领域是实现阳性转移的最重要因素; (3)源数据集应该\ \ emph {include}目标数据集的图像域以获得最佳结果; (4)与此同时,当源任务的图像域比目标的图像域时,我们只观察小的负面影响; (5)跨任务类型的转移可能是有益的,但其成功严重依赖于源和目标任务类型。
translated by 谷歌翻译
Semantic classes can be either things (objects with a well-defined shape, e.g. car, person) or stuff (amorphous background regions, e.g. grass, sky). While lots of classification and detection works focus on thing classes, less attention has been given to stuff classes. Nonetheless, stuff classes are important as they allow to explain important aspects of an image, including (1) scene type; (2) which thing classes are likely to be present and their location (through contextual reasoning); (3) physical attributes, material types and geometric properties of the scene. To understand stuff and things in context we introduce COCO-Stuff 1 , which augments all 164K images of the COCO 2017 dataset with pixel-wise annotations for 91 stuff classes. We introduce an efficient stuff annotation protocol based on superpixels, which leverages the original thing annotations. We quantify the speed versus quality trade-off of our protocol and explore the relation between annotation time and boundary complexity. Furthermore, we use COCO-Stuff to analyze: (a) the importance of stuff and thing classes in terms of their surface cover and how frequently they are mentioned in image captions; (b) the spatial relations between stuff and things, highlighting the rich contextual relations that make our dataset unique; (c) the performance of a modern semantic segmentation method on stuff and thing classes, and whether stuff is easier to segment than things.
translated by 谷歌翻译
The semantic image segmentation task presents a trade-off between test time accuracy and training-time annotation cost. Detailed per-pixel annotations enable training accurate models but are very timeconsuming to obtain; image-level class labels are an order of magnitude cheaper but result in less accurate models. We take a natural step from image-level annotation towards stronger supervision: we ask annotators to point to an object if one exists. We incorporate this point supervision along with a novel objectness potential in the training loss function of a CNN model. Experimental results on the PASCAL VOC 2012 benchmark reveal that the combined effect of point-level supervision and objectness potential yields an improvement of 12.9% mIOU over image-level supervision. Further, we demonstrate that models trained with pointlevel supervision are more accurate than models trained with image-level, squiggle-level or full supervision given a fixed annotation budget.
translated by 谷歌翻译